What is RAM
RAM
Random-access memory (RAM /ræm/) is a form of computer data storage that stores data and machine code currently being used. A random-access memory device allows data items to be read or written in almost the same amount of time irrespective of the physical location of data inside the memory. In contrast, with other direct-access data storage media such as hard disks, CD-RWs, DVD-RWs and the older magnetic tapes and drum memory, the time required to read and write data items varies significantly depending on their physical locations on the recording medium, due to mechanical limitations such as media rotation speeds and arm movement.
SearchStorage
Home Data storage management Hardware RAM (random access memory)
DEFINITION
RAM (random access memory)
Posted by: Margaret Rouse
WhatIs.com
Contributor(s): Rodney Brown
For additional information, see Fast Guide to RAM.
RAM (random access memory) is the place in a computing device where the operating system (OS), application programs and data in current use are kept so they can be quickly reached by the device's processor. RAM is much faster to read from and write to than other kinds of storage in a computer, such as a hard disk drive (HDD), solid-state drive (SSD) or optical drive. Data remains in RAM as long as the computer is running. When the computer is turned off, RAM loses its data. When the computer is turned on again, the OS and other files are once again loaded into RAM, usually from an HDD or SSD.
SDRAM: static dynamic random access memory takes advantage of the burst mode concept to greatly improve performance. It does this by staying on the row containing the requested bit and moving rapidly through the columns, reading each bit as it goes. The idea is that most of the time the data needed by the CPU will be in sequence. SDRAM is about five percent faster than EDO RAM and is the most common form in desktops today. Maximum transfer rate to L2 cache is approximately 528 MBps.
DDR1 DDR SDRAM (Double Data Rate SDRAM):
The next generation of SDRAM is DDR, which achieves greater bandwidth than the preceding single data rate SDRAM by transferring data on the rising and falling edges of the clock signal (double pumped). Effectively, it doubles the transfer rate without increasing the frequency of the clock. The transfer rate of DDR SDRAM is the double of SDR SDRAM without changing the internal clock. DDR SDRAM, as the first generation of DDR memory, the prefetch buffer is 2bit, which is the double of SDR SDRAM.
DDR2 SDRAM(Double Data Rate Two SDRAM):
Its primary benefit is the ability to operate the external data bus twice as fast as DDR SDRAM. This is achieved by improved bus signal. The prefetch buffer of DDR2 is 4 bit(double of DDR SDRAM). DDR2 memory is at the same internal clock speed (133~200MHz) as DDR, but the transfer rate of DDR2 can reach 533~800 MT/s with the improved I/O bus signal. DDR2 533 and DDR2 800 memory types are on the market.
DDR3 SDRAM(Double Data Rate Three SDRAM):
DDR3 memory reduces 40% power consumption compared to current DDR2 modules, allowing for lower operating currents and voltages (1.5 V, compared to DDR2's 1.8 V or DDR's 2.5 V). The transfer rate of DDR3 is 800~1600 MT/s. DDR3's prefetch buffer width is 8 bit, whereas DDR2's is 4 bit, and DDR's is 2 bit. DDR3 also adds two functions, such as ASR (Automatic Self-Refresh) and SRT (Self-Refresh Temperature). They can make the memory control the refresh rate according to the temperature variation.
DDR4 SDRAM (Double Data Rate Fourth SDRAM):
DDR4 SDRAM provides the lower operating voltage (1.2V) and higher transfer rate. The transfer rate of DDR4 is 2133~3200 MT/s. DDR4 adds four new Bank Groups technology.
Comments
Post a Comment